7 research outputs found

    Structures of unliganded and inhibitor complexes of W168F, a loop6 hinge mutant of Plasmodium falciparum Triosephosphate Isomerase: observation of an intermediate position of loop6

    Get PDF
    The enzymatic reaction of triosephosphate isomerase (TIM) is controlled by the movement of a loop (loop6, residues 166-176). Crystal structures of TIMs from a variety of sources have revealed that the loop6, which is in an open conformation in the unliganded enzyme, adopts a closed conformation in inhibitor complexes. In contrast, structures with loop open conformation are obtained in most of the complexes of TIM from the malarial parasite Plasmodium falciparum (PfTIM). W168 is a conserved N-terminal hinge residue, involved in different sets of interactions in the "open" and "closed" forms of loop6. The role of W168 in determining the loop conformation was examined by structural studies on the mutant W168F and its complexes with ligands. The three-dimensional structures of unliganded mutant (1.8 Å) and complexes with sulfate (2.8 Å) and glycerol-2-phosphate (G2P) (2.8 Å) have been determined. Loop6 was found disordered in these structures, reflecting the importance of W168 in stabilizing either the open or the closed states. Critical sequence differences between the Plasmodium enzyme and other TIMs may influence the equilibrium between the closed and open forms. Examination of the environment of the loop6 shows that its propensity for the open or the closed forms is influenced not only by Phe96 as suggested earlier, but also by Asn233, which occurs in the vicinity of the active site. This residue is Gly in the other TIM sequences and probably plays a crucial role in the mode of ligand binding, which in turn affects the loop opening/closing process in PfTIM

    Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

    Get PDF

    Structures of Unliganded and Inhibitor Complexes of W168F, a Loop6 Hinge Mutant of Plasmodium falciparum Triosephosphate Isomerase: Observation of an Intermediate Position of Loop6

    No full text
    The enzymatic reaction of triosephosphate isomerase (TIM) is controlled by the movement of a loop (loop6, residues 166–176). Crystal structures of TIMs from a variety of sources have revealed that the loop6, which is in an open conformation in the unliganded enzyme, adopts a closed conformation in inhibitor complexes. In contrast,structures with loop open conformation are obtained in most of the complexes of TIM from the malarial parasite Plasmodium falciparum (PfTIM). W168 is a conserved Nterminal hinge residue, involved in different sets of interactions in the “open��? and “closed��? forms of loop6. The role of W168 in determining the loop conformation was examined by structural studies on the mutant W168F and its complexes with ligands. The three-dimensional structures of unliganded mutant (1.8A˚)(1.8 \AA ) and complexes with sulfate (2.8A˚)(2.8 \AA) and glycerol-2-phosphate (G2P) (2.8A˚)(2.8 \AA ) have been determined. Loop6 was found disordered in these structures, reflecting the importance of W168 in stabilizing either the open or the closed states. Critical sequence differences between the Plasmodium enzyme and other TIMs may influence the equilibrium between the closed and open forms. Examination of the environment of the loop6 shows that its propensity for the open or the closed forms is influenced not only by Phe96 as suggested earlier, but also by Asn233, which occurs in the vicinity of the active site. This residue is Gly in the other TIM sequences and probably plays a crucial role in the mode of ligand binding, which in turn affects the loop opening/closing process in PfTIM

    Crystal Structure of Fully Ligated Adenylosuccinate Synthetase from Plasmodium falciparum

    No full text
    In the absence of the de novo purine nucleotide biosynthetic pathway in parasitic protozoa, purine salvage is of primary importance for parasite survival. Enzymes of the salvage pathway are, therefore, good targets for anti-parasitic drugs. Adenylosuccinate synthetase (AdSS), catalysing the first committed step in the synthesis of AMP from IMP, is a potential target for anti-protozoal chemotherapy. We report here the crystal structure of adenylosuccinate synthetase from the malaria parasite, Plasmodium falciparum, complexed to 6-phosphoryl IMP, GDP, Mg2+Mg^{2+} and the aspartate analogue, hadacidin at 2 A˚\AA resolution. The overall architecture of P. falciparum AdSS (PfAdSS) is similar to the known structures from Escherichia coli, mouse and plants. Differences in substrate interactions seen in this structure provide a plausible explanation for the kinetic differences between PfAdSS and the enzyme from other species.Additional hydrogen bonding interactions of the protein with GDP may account for the ordered binding of substrates to the enzyme. The dimer interface of PfAdSS is also different, with a pronounced excess of positively charged residues. Differences highlighted here provide a basis for the design of species-specific inhibitors of the enzyme

    Crystal Structure of fully ligated adenylosuccinate synthetase from plasmodium falciparum

    No full text
    In the absence of the de novo purine nucleotide biosynthetic pathway in parasitic protozoa, purine salvage is of primary importance for parasite survival. Enzymes of the salvage pathway are, therefore, good targets for anti-parasitic drugs. Adenylosuccinate synthetase (AdSS), catalysing the first committed step in the synthesis of AMP from IMP, is a potential target for anti-protozoal chemotherapy. We report here the crystal structure of adenylosuccinate synthetase from the malaria parasite, Plasmodium falciparum, complexed to 6-phosphoryl IMP, GDP, Mg<SUP>2+</SUP> and the aspartate analogue, hadacidin at 2 &#197; resolution. The overall architecture of P. falciparum AdSS (PfAdSS) is similar to the known structures from Escherichia coli, mouse and plants. Differences in substrate interactions seen in this structure provide a plausible explanation for the kinetic differences between PfAdSS and the enzyme from other species. Additional hydrogen bonding interactions of the protein with GDP may account for the ordered binding of substrates to the enzyme. The dimer interface of PfAdSS is also different, with a pronounced excess of positively charged residues. Differences highlighted here provide a basis for the design of species-specific inhibitors of the enzyme
    corecore